If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-432=0
a = 2; b = 6; c = -432;
Δ = b2-4ac
Δ = 62-4·2·(-432)
Δ = 3492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3492}=\sqrt{36*97}=\sqrt{36}*\sqrt{97}=6\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{97}}{2*2}=\frac{-6-6\sqrt{97}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{97}}{2*2}=\frac{-6+6\sqrt{97}}{4} $
| 12000(2)x/2=60000 | | 1=r/11 | | 6•(3x-7)=6x-6 | | (x-3)^2+x^2-441=0 | | 4(2x-3)-5x=7x+4 | | 3/4(4x-12)=9 | | -6-5x-1=4x+0.83.2 | | 9(2x+5)=2(3-x)+4(6-x) | | -5x-1=4x+.8 | | 0.1x-0.2x=3.9 | | 2x+x=5x-2x | | x+15)+(x)+(4x-20)=180 | | 6y-18=38 | | 2n-15=9 | | -5/6y-1/9=-102 | | x-10.1=x+5.3 | | 1.2x+5=2x-3 | | 5=2x+X2 | | 1=4x=17 | | 9x−8x=16 | | 4x-1/2=2x+7 | | 6x-2(2+8x=10+4x | | 8p+6p-4=10p | | c=37.90+3.1 | | 8+4x=23 | | X-8=2x+14 | | 37.90=d+3.1 | | 5y-9=-21 | | 1n-6=-8 | | 2(2j+3)-2=5 | | 4+2(1+i)=12 | | 9x=4x+21+3 |